99 research outputs found

    On Restricting Real-Valued Genotypes in Evolutionary Algorithms

    Full text link
    Real-valued genotypes together with the variation operators, mutation and crossover, constitute some of the fundamental building blocks of Evolutionary Algorithms. Real-valued genotypes are utilized in a broad range of contexts, from weights in Artificial Neural Networks to parameters in robot control systems. Shared between most uses of real-valued genomes is the need for limiting the range of individual parameters to allowable bounds. In this paper we will illustrate the challenge of limiting the parameters of real-valued genomes and analyse the most promising method to properly limit these values. We utilize both empirical as well as benchmark examples to demonstrate the utility of the proposed method and through a literature review show how the insight of this paper could impact other research within the field. The proposed method requires minimal intervention from Evolutionary Algorithm practitioners and behaves well under repeated application of variation operators, leading to better theoretical properties as well as significant differences in well-known benchmarks

    From real-time adaptation to social learning in robot ecosystems

    Get PDF
    While evolutionary robotics can create novel morphologies and controllers that are well-adapted to their environments, learning is still the most efficient way to adapt to changes that occur on shorter time scales. Learning proposals for evolving robots to date have focused on new individuals either learning a controller from scratch, or building on the experience of direct ancestors and/or robots with similar configurations. Here we propose and demonstrate a novel means for social learning of gait patterns, based on sensorimotor synchronization. Using movement patterns of other robots as input can drive nonlinear decentralized controllers such as CPGs into new limit cycles, hence encouraging diversity of movement patterns. Stable autonomous controllers can then be locked in, which we demonstrate using a quasi-Hebbian feedback scheme. We propose that in an ecosystem of robots evolving in a heterogeneous environment, such a scheme may allow for the emergence of generalist task-solvers from a population of specialists

    Evolved embodied phase coordination enables robust quadruped robot locomotion

    Full text link
    Overcoming robotics challenges in the real world requires resilient control systems capable of handling a multitude of environments and unforeseen events. Evolutionary optimization using simulations is a promising way to automatically design such control systems, however, if the disparity between simulation and the real world becomes too large, the optimization process may result in dysfunctional real-world behaviors. In this paper, we address this challenge by considering embodied phase coordination in the evolutionary optimization of a quadruped robot controller based on central pattern generators. With this method, leg phases, and indirectly also inter-leg coordination, are influenced by sensor feedback.By comparing two very similar control systems we gain insight into how the sensory feedback approach affects the evolved parameters of the control system, and how the performances differs in simulation, in transferal to the real world, and to different real-world environments. We show that evolution enables the design of a control system with embodied phase coordination which is more complex than previously seen approaches, and that this system is capable of controlling a real-world multi-jointed quadruped robot.The approach reduces the performance discrepancy between simulation and the real world, and displays robustness towards new environments.Comment: 9 page

    Lookup table partial reconfiguration for an evolvable hardware classifier system

    Full text link
    Abstract—The evolvable hardware (EHW) paradigm relies on continuous run-time reconfiguration of hardware. When applied on modern FPGAs, the technically challenging reconfiguration process becomes an issue and can be approached at multiple levels. In related work, virtual reconfigurable circuits (VRC), partial reconfiguration, and lookup table (LUT) reconfiguration approaches have been investigated. In this paper, we show how fine-grained partial reconfiguration of 6-input LUTs of modern Xilinx FPGAs can lead to significantly more efficient resource utilization in an EHW application. Neither manual placement nor any proprietary bitstream manipulation is required in the simplest form of the employed method. We specify the goal archi-tecture in VHDL and read out the locations of the automatically placed LUTs for use in an online reconfiguration setting. This allows for an easy and flexible architecture specification, as well as possible implementation improvements over a hand-placed design. For demonstration, we rely on a hardware signal classifier application. Our results show that the proposed approach can fit a classification circuit 4 times larger than an equivalent VRC-based approach, and 6 times larger than a shift register-based approach, in a Xilinx Virtex-5 device. To verify the reconfiguration process, a MicroBlaze-based embedded system is implemented, and reconfiguration is carried out via the Xilinx Internal Configuration Access Port (ICAP) and driver software. I

    Open-ended search for environments and adapted agents using MAP-Elites

    Full text link
    Creatures in the real world constantly encounter new and diverse challenges they have never seen before. They will often need to adapt to some of these tasks and solve them in order to survive. This almost endless world of novel challenges is not as common in virtual environments, where artificially evolving agents often have a limited set of tasks to solve. An exception to this is the field of open-endedness where the goal is to create unbounded exploration of interesting artefacts. We want to move one step closer to creating simulated environments similar to the diverse real world, where agents can both find solvable tasks, and adapt to them. Through the use of MAP-Elites we create a structured repertoire, a map, of terrains and virtual creatures that locomote through them. By using novelty as a dimension in the grid, the map can continuously develop to encourage exploration of new environments. The agents must adapt to the environments found, but can also search for environments within each cell of the grid to find the one that best fits their set of skills. Our approach combines the structure of MAP-Elites, which can allow the virtual creatures to use adjacent cells as stepping stones to solve increasingly difficult environments, with open-ended innovation. This leads to a search that is unbounded, but still has a clear structure. We find that while handcrafted bounded dimensions for the map lead to quicker exploration of a large set of environments, both the bounded and unbounded approach manage to solve a diverse set of terrains

    Co-optimising Robot Morphology and Controller in a Simulated Open-Ended Environment

    Full text link
    Designing robots by hand can be costly and time consuming, especially if the robots have to be created with novel materials, or be robust to internal or external changes. In order to create robots automatically, without the need for human intervention, it is necessary to optimise both the behaviour and the body design of the robot. However, when co-optimising the morphology and controller of a locomoting agent the morphology tends to converge prematurely, reaching a local optimum. Approaches such as explicit protection of morphological innovation have been used to reduce this problem, but it might also be possible to increase exploration of morphologies using a more indirect approach. We explore how changing the environment, where the agent locomotes, affects the convergence of morphologies. The agents' morphologies and controllers are co-optimised, while the environments the agents locomote in are evolved open-endedly with the Paired Open-Ended Trailblazer (POET). We compare the diversity, fitness and robustness of agents evolving in environments generated by POET to agents evolved in handcrafted curricula of environments. Our agents each contain of a population of individuals being evolved with a genetic algorithm. This population is called the agent-population. We show that agent-populations evolving in open-endedly evolving environments exhibit larger morphological diversity than agent-populations evolving in hand crafted curricula of environments. POET proved capable of creating a curriculum of environments which encouraged both diversity and quality in the populations. This suggests that POET may be capable of reducing premature convergence in co-optimisation of morphology and controllers.Comment: 17 pages, 8 figure

    Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image using CNN

    Full text link
    Collaborative robots are becoming more common on factory floors as well as regular environments, however, their safety still is not a fully solved issue. Collision detection does not always perform as expected and collision avoidance is still an active research area. Collision avoidance works well for fixed robot-camera setups, however, if they are shifted around, Eye-to-Hand calibration becomes invalid making it difficult to accurately run many of the existing collision avoidance algorithms. We approach the problem by presenting a stand-alone system capable of detecting the robot and estimating its position, including individual joints, by using a simple 2D colour image as an input, where no Eye-to-Hand calibration is needed. As an extension of previous work, a two-stage transfer learning approach is used to re-train a multi-objective convolutional neural network (CNN) to allow it to be used with heterogeneous robot arms. Our method is capable of detecting the robot in real-time and new robot types can be added by having significantly smaller training datasets compared to the requirements of a fully trained network. We present data collection approach, the structure of the multi-objective CNN, the two-stage transfer learning training and test results by using real robots from Universal Robots, Kuka, and Franka Emika. Eventually, we analyse possible application areas of our method together with the possible improvements.Comment: 6+n pages, ICRA 2019 submissio
    • …
    corecore